A New Conceptualization of the Psychopathology in Schizophrenia by Nonnegative Matrix Factorization

Ji Chen^{1,2}, Kaustubh R. Patil^{1,2}, Susanne Weis^{1,2}, Kang Sim^{3,4}, Thomas Nickl-Jockschat^{5,6}, Juan Zhou⁷, André Aleman⁸, Iris E. Sommer^{8,9,10}, Richard Bruggeman^{11,12}, Ute Habel^{5,13}, Birgit Derntl¹⁴, Lydia Kogler¹⁴, Christina Regenbogen^{5,13}, Vaibhav A. Diwadkar¹⁵, Jeffrey A.Stanley¹⁵, Valentin Riedl¹⁶, Renaud Jardri¹⁷, Oliver Gruber¹⁸, Aristeidis Sotiras^{19,20}, Christos Davatzikos^{19,20}, Simon B. Eickhoff^{1,2} FORSCHUNGSZENTRUM

¹Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany; ²Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ³Departmen of General Psychiatry, Institute of Mental Health, Singapore; ⁴Research Division, Institute of Mental Health, Singapore; ⁵Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany; ⁶Department of Psychiatry, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; ⁷Center for Cognitive Neuroscience, Duke-National University of Singapore Medical School, Singapore; ⁸Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; 9BCN Neuroimaging Center, University of Groningen, The Netherlands; 10Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; 11 University of Groningen, University Center for Psychiatry, Groningen, The Netherlands; 12 University of Groningen, Rob Giel Research Center, Groningen, The Netherlands; 13 JARA-Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen, Germany; ¹⁴Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; ¹⁵Department of Psychiatry and Behavioral Neuroscience, Wayne State University, USA; ¹⁶Abteilung fur diagnostische und interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Germany; ¹⁷CUniv Lille, CNRS UMR9193, SCALab & CHU Lille, Fontan Hospital, CURE platform, Lille, France; ¹⁸Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany; ¹⁹Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; ²⁰Department of Radiology, Section of Biomedical Image Analysis, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

Introduction

- Schizophrenia (SCZ) is heterogeneous [1] with marked inter-individual variability of psychopathology. Low-rank dimensional representations of SCZ psychopathology and clinical subtypes, however, have been a continued matter of conjecture.
- A novel parts-based learning approach of orthonormal projective non-negative matrix factorization (OPNMF) [2] was employed, upon which patients were clustered into psychopathological subtypes. Finally, psychopathological subtypes were classified based on resting-state fMRI functional connectivity.

Aim: To provide

- > a cross-validated and generalizable factor model as a low-rank representation of SCZ psychopathology;
- a reliable SCZ subtyping;
- neurobiological substrates identified the psychopathological subtypes

Patients from 11 medical centers/universities with 30 individual-item PANSS scores:

One homogeneous sample of 1545 patients from the north of the Netherlands (PHAMOS).

One heterogeneous dataset with 490 patients from 10 sites located in Europe, the USA and Asia.

PANSS factorization by OPNMF

Study population

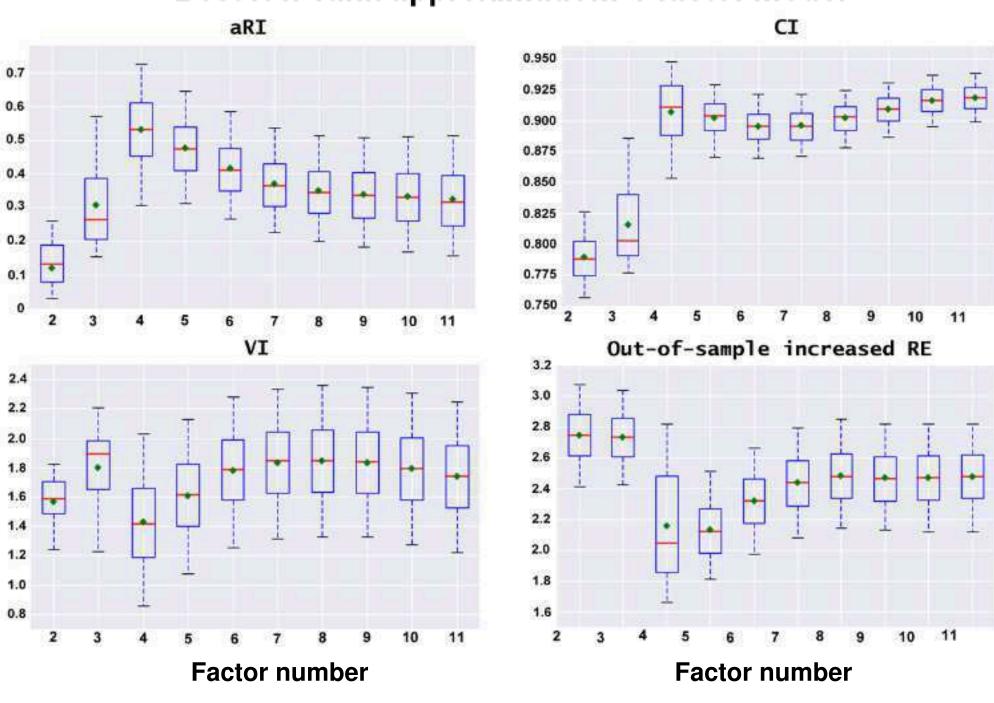
OPNMF owes advantages of a) sparse and b) projectable, which solves the below energy minimization problem:

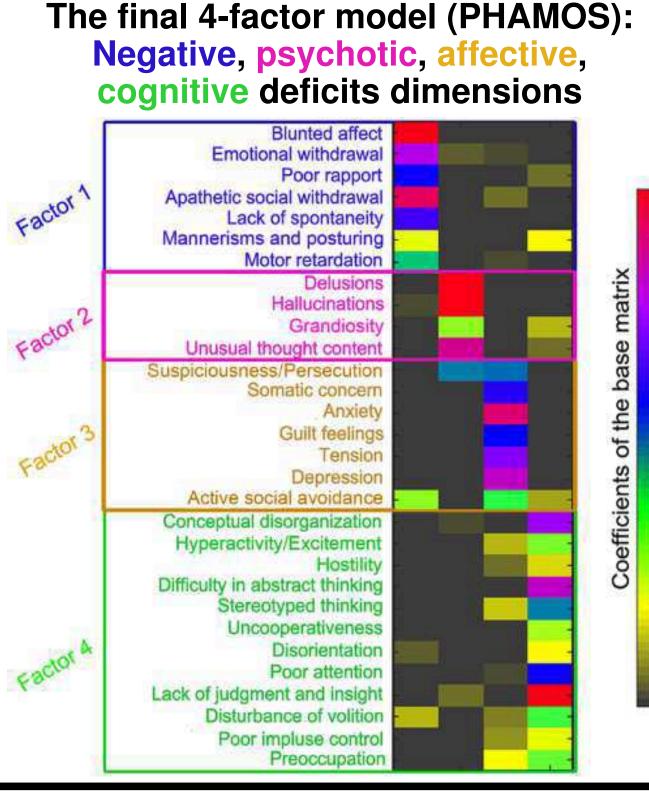
W: basis matrix (dictionary) with each column encoding a factor; H: loading matrix, represented by the projection of V onto W:

Model evaluation and selection

Factor-solutions were evaluated in two aspects:

- 1. stability (by measuring adjusted rand index, variation of information and concordance index)
- 2. generalizability (by measuring transfer reconstruction errors)

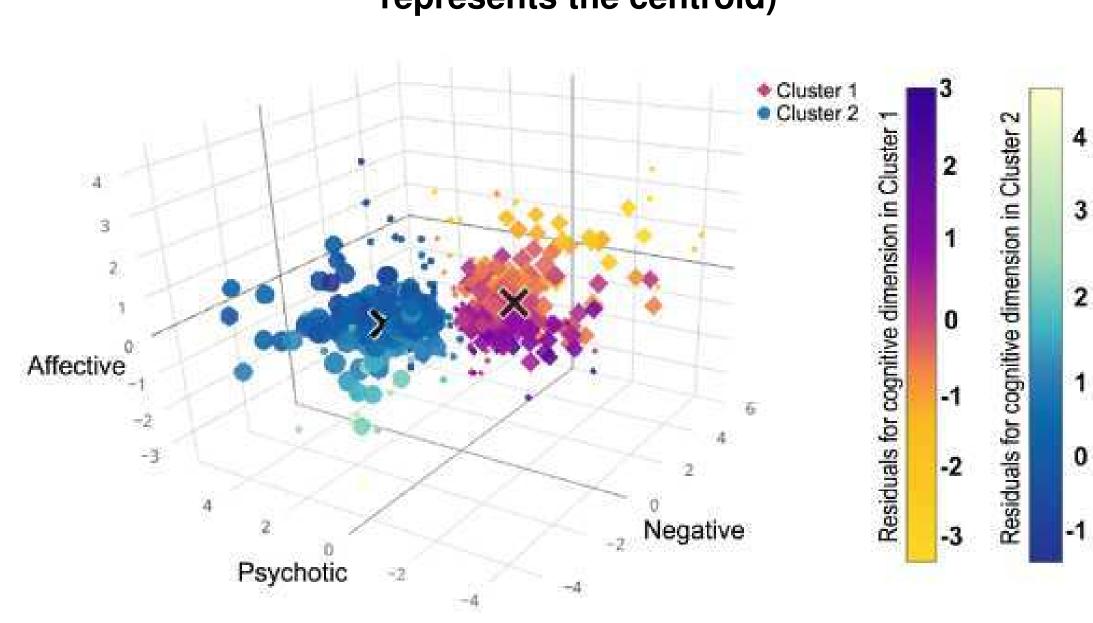

Methods

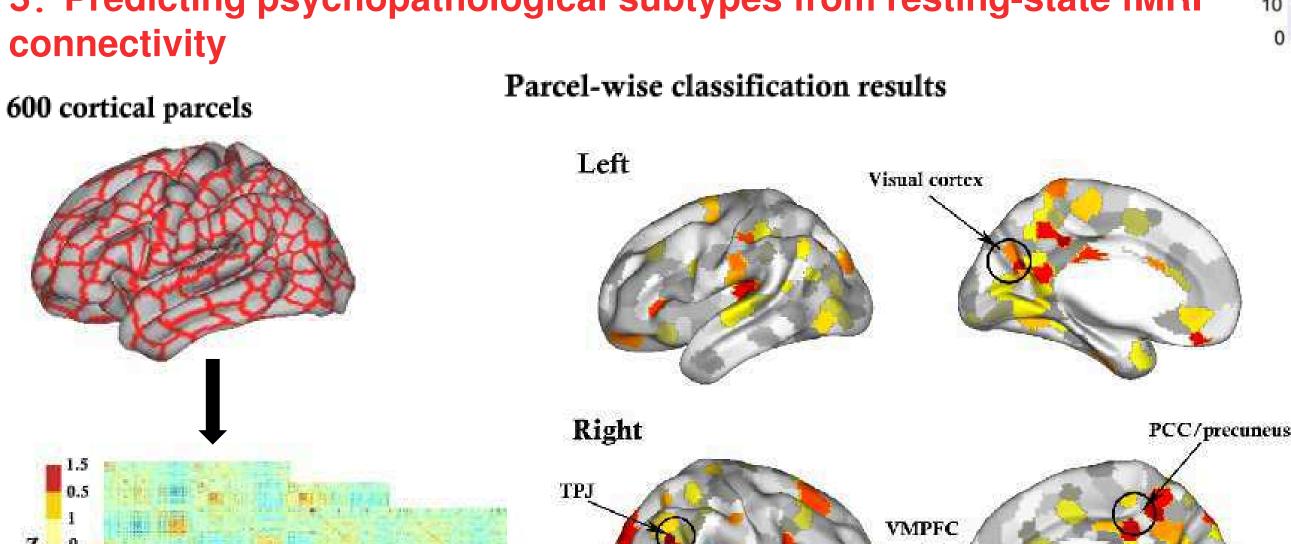

- Psychopathological subtypes
- Fuzzy c-means was used to cluster patients based on the factor-loadings
 - Fuzzy silhouette index, Xie and Beni index and partition entropy were employed to determine the optimal cluster number
 - Stability was evaluated by a leave-one-site out analysis, as well as subsampling and bootstrap resampling strategies
- Ambiguously assigned patients were removed. deriving the "core" subtypes
- Predicting psychopathological subtypes from restingstate fMRI connectivity patterns
- > Resting-state functional connectivity matrix was constructed based on a 600 parcellation scheme
- > Radial Basis Function (RBF) kernel based support vector machine (SVM) was used
- > A grid-search scheme was implemented to tune the two hyperparameters of C and γ
- > A permutation test to assess whether the parcelwise accuracy was significantly above chance

Results

1. PANSS factorization

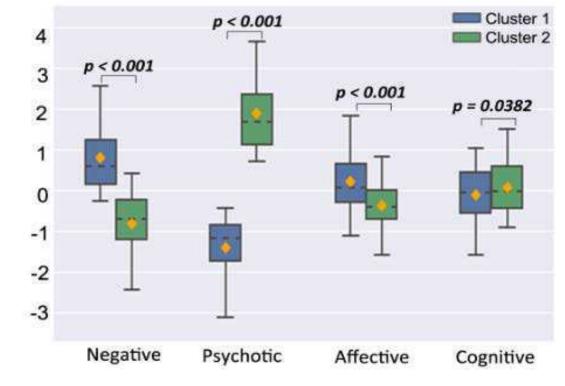
Stability and generalization across the datasets (bootstrap) Best low-rank approximation: 4-factor model



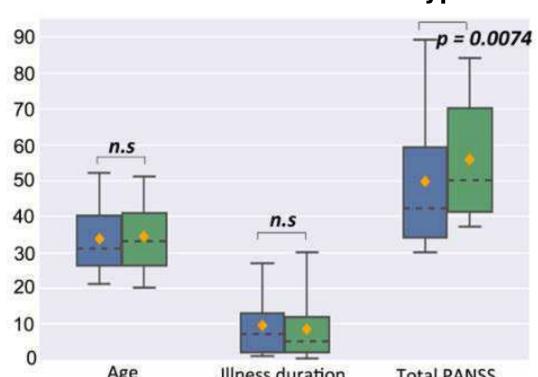

≻Higher aRI (adjusted rand_index) and CI (concordance index): higher stability >Lower VI (variation of information) and RE (errorincrease): better generalization

2. Psychopathological subtypes

A. 4D visualization of the two clusters (outliers were defined by membership values < 0.7 and were shown in small dots, X represents the centroid)



3. Predicting psychopathological subtypes from resting-state fMRI connectivity



Connectivity matrix Top predictive regions are circled

B. Comparison of the four factor-loadings between the two "core" subtypes

Comparison of age and clinical features between the two "core" subtypes

Dorsal Ventral Region-based classification accuracy

Whole-brain connectome based classification accuracy: 0.57

Discussion

- 1. A 4-factor model was found to be optimal. It with previous studies matches accommodates variable degrees of psychotic large symptoms across a range populations, settings, and medical systems.
- 2. Previous clinical subtypes [4,5] numbers and definitions. Nonetheless, a positive-negative dichotomy has been widely supported [6]. Here we emphasized that a
- stable and replicable dichotomous sub-typing can be derived upon the 4 psychopathological dimensions.
- Region-wise classification out-performed wholeconnectome based classifier. The top predictive regions are all supported by previous literature [7]. The highest accuracy revealed here was fairly comparable to previous classification that discriminated SCZ patients from healthy subjects [8].

The current study provides a novel crossvalidated, generalizable low-rank approximation of SCZ psychopathology based on more than 1500 patients. Based on this optimal factor-structure, a reliable "core" psychopathological sub-typing was proposed which could be predicted from resting-state functional connectivity with a high accuracy.

References

- [1]. Kirkpatrick B, et al. A separate disease within the syndrome of schizophrenia. Archives of general psychiatry, 2001, 58(2): 165-171.
- [2]. Yang Z, et al. Projective non-negative matrix factorization with applications to facial image processing. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21: 1353-1362. [3]. Kay S R, Sevy S. Pyramidical model of schizophrenia. Schizophrenia bulletin, 1990, 16(3): 537.
- [4]. Dollfus S, et al. Identifying subtypes of schizophrenia by cluster analyses. Schizophrenia Bulletin, 1996, 22(3): 545-555. [5]. Dickinson D, et al. Attacking heterogeneity in schizophrenia by deriving clinical subgroups from widely available symptom data. Schizophrenia bulletin, 2017, 44(1): 101-113.
- [6]. Peralta V, et al. Positive and negative symptoms/ syndromes in schizophrenia: reliability and validity of different diagnostic systems. Psychol Med 1995; 25: 43–50. [7]. Vercammen A, et al. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-
- parietal area. Biological psychiatry, 2010, 67(10): 912-918. [8]. Rozycki M, Satterthwaite T D, Koutsouleris N, et al. Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals, Schizophrenia bulletin, 2017,

emeinschaft

Helmholtz-

der